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Reversal effects in stochastic kink dynamics

A. V. Savin,* G. P. Tsironis, and A. V. Zolotaryuk†

Physics Department, University of Crete, Greece and Foundation for Research and Technology–Hellas, Heraklion, Crete, Greece
~Received 27 March 1997!

We study collective regular and stochastic dynamics in a chain of harmonically coupled particles subjected
to an on-site potential with two degenerate energy wells but with differing frequencies of small-amplitude
oscillations at their minima. We identify and study asymmetry-induced properties of a Peierls-Nabarro relief,
kink-antikink interactions, and stochastic kink motion. In particular, we predict analytically and confirm nu-
merically directed noise-induced soliton motion when the chain particles are driven by white and exponentially
correlated noise. The difference of frequencies of oscillations in the vicinity of the wells is shown to be a
sufficient condition for the existence of such a directed kink motion. We find that under certain conditions a
reversal of the soliton motion takes place; these conditions involve the noise properties such as a critical
correlation time or noise strength or the presence of an external d.c. field. In particular, we find that above some
critical value of temperature, the directed soliton transport occurs against an applied d.c. field.
@S1063-651X~97!07508-9#

PACS number~s!: 05.40.1j, 03.20.1i, 43.50.1y, 46.10.1z
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I. INTRODUCTION

Since the pioneering work of Krumhansl and Schrief
@1# and Aubry @2# on the dynamics of topological soliton
~kinks and antikinks! in the f4 field theory, there has bee
great interest in applications of this theory in condensed m
ter physics and biology@3#. A chain of harmonically coupled
particles each subjected to the local~on-site! symmetric
double-well potential is adopted to be a basic model in th
studies due to its simplicity as well as the existence of a
lytical soliton solutions. We note that the majority of mat
rials with strong quasi-one-dimensional anisotropy admitt
the existence of topological defects have indeed a relativ
simple structure without any asymmetry of the on-site pot
tial. For instance, in a hydrogen-bonded chain (XuH)` ,
whereX is one of the atoms O, F, Cl, or Br, both the groun
state configurations•••XuH•••XuH•••XuH••• and
•••HuX•••HuX•••HuX••• are completely equivalent
both energetically and structurally@4#. Asymmetry is absen
in such systems and the top of the on-site double-well po
tial is situated at the midpoint of the hydrogen bond. Ho
ever, topological defects can also exist in more complex c
densed matter and biomolecular objects, e.g., in microtub
@5#. In the latter case, an electron moving in a tubulin dim
can reside in either tubulin monomer, viz., in thea or b
monomer. The resulting two-minima relief separated by
maximum configuration of the electron dipole moment h
been described through a symmetric double-well (f4) poten-
tial @5#. This model provides a simplification for the electro
transfer process. One could argue that structural differe
between thea and b tubulin monomers as well as the a
companying conformational changes of theb monomer
while the electron resides in this monomer renders the
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tem asymmetric. As a result, the model potential for the p
cess is indeed bistable and asymmetric one. This struct
asymmetry is not unexpected and it appears in other com
biomolecular systems where bistability is a result of the
istence of pairs of similar but not identical building blocks

Single-particle stochastic symmetry-breaking phenom
have recently seen an explosion of interest of physicists s
their original appearance a few years ago in the contex
molecular motors@6–13#. The symmetry-breaking effect in
volves adirectedmotion of a single particle in anasymmet-
ric periodic potential under the influence of noise fluctu
tions that have some correlation property. The macrosco
manifestation of such a preferential motion of independ
particles is through the appearance of a nonzero par
~probability! current. Thisratcheteffect seems to be generi
in the context of single-particle stochastic dynamics in pe
odic but anisotropic~asymmetric! potentials@8#. Since the
topological soliton state in the kink-bearing family can
considered simply as an effective single particle@14#, it
would be expected that the ratchet effect takes place also
solitons moving in an asymmetric periodic on-site potent
Recently, the stochastic ratchet effect has been extende
the soliton case@15,16#. Marchesoni in particular has show
that a stationary noise-induced current of kinks and antiki
in opposite directions exists as a function of the noisecorre-
lation timeand the kink-antikinkasymmetry@15#.

The present paper aims to study in detail the regular
stochastic kink dynamics in the other class of kink-bear
models where the on-site potential is an asymmetricdouble-
well function with degenerateminima @16#. More precisely,
the asymmetry of the double-well potential means that
frequencies of small-amplitude oscillations at the poten
minima aredifferent. In such a case of bounded motion, n
stationary current of kinks and antikinks in the same dir
tion can exist as in the case of a periodic potential@15#. The
basic question is now as to whether preferential kink~anti-
kink! motion occurs as well as the detailed conditions
such directed kink~antikink! motion. We will show that such
a motion does indeed take place not only with colored no

,

2457 © 1997 The American Physical Society



is
o
in

ib
ito

e
th
t
an
ap

w
e

b
ic
he
to
ri
i-

le
hi
m

rm

,

ti
th

ion

s

on

r
th

e
r

p

he

tial.

e
t
s
of

ell
sed
ar-

rt in

tice

2458 56A. V. SAVIN, G. P. TSIRONIS, AND A. V. ZOLOTARYUK
as in Ref.@15#, but also in the presence of white noise. Th
result is not in contradiction with the second law of therm
dynamics; it simply expresses the fact that our kink-bear
system is not truly in thermodynamic equilibrium.

The main point of our studies in this paper is to descr
the factors that determine the direction of stochastic sol
motion. We find that there are three factors:~i! the correla-
tion properties of the noise,~ii ! the noise intensity, and~iii !
the external dc field. By studying the different resulting r
gimes, we can find corresponding critical values at which
reversalof the kink ~antikink! motion occurs. We note tha
the reversal of the directed single-particle motion in
asymmetric periodic potential is affected by the exact sh
of the potential and especially its higher derivatives@17#.

The paper is organized as follows. In the next section
describe the chain model with an asymmetric double-w
on-site potential. Standing kink~antikink! solutions and the
corresponding Peierls-Nabarro potential relief will be o
tained in Sec. III. In Sec. IV we study the regular dynam
of asymmetric kinks and antikinks. In Sec. V we give t
theory that allows the prediction of the direction of the s
chastic soliton motion. This theory is confirmed by nume
cal simulations of the equations of motion in Sec. VI. F
nally, we summarize our findings in Sec. VII.

II. AN ASYMMETRIC BISTABLE CHAIN MODEL

We consider a chain of harmonically coupled partic
subjected to an on-site potential of a general form. T
model belongs to the discrete nonlinear Klein-Gordon fa
ily, describing topological soliton dynamics in one-
dimensional lattices. Its Hamiltonian has the standard fo
@1–3#

H5(
n

F1

2
mẋn

21k~xn112xn!21«0V~xn /a!G , ~1!

wherem is the mass of a chain particle,k is the stiffness
constant of the interparticle nearest-neighbor interactionxn
is the displacement of thenth particle from the midpoint
between the minima of the dimensionless on-site poten
V(u), a is the half distance between the minima, and
overdot denotes differentiation with respect to timet. In this
paper we are dealing with the on-site potential funct
V(u) of the double-well form with two energeticallydegen-
erate minima ~ground states! and differing frequencies of
small-amplitude oscillations at the minima. In what follow
this potential is called anasymmetric bistable~AB! potential.
More precisely, we define the on-site double-well functi
V(u), 2`,u,`, satisfying the following properties~see
Fig. 1!: ~i! both its minima situated at the pointsu561 are
degenerate and~ii ! its curvatures at the minima or, in othe
words, the frequencies of small-amplitude oscillations in
ground statesV15AV9(21) andV25AV9(1) are different,
i.e.,V9(21)ÞV9(1). Here and throughout the present pap
primes denote differentiation. As shown in Fig. 1, we no
malize the function V(u) through V(61)50 and
V( l 0)51, wherel 0P(21,1) is the position of the barrier to
separated by the minima at the pointsu561; therefore, the
parameter«0 should be referred to as the barrier height of t
on-site AB potential.
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The function

V~u!5S 12exp@b1~u21!#

12exp@b1~ l 021!#

12exp@2b2~u11!#

12exp@2b2~ l 011!# D
2

~2!

can be chosen as the simplest example of the AB poten
Here the position of the barrier topl 0 is determined as a
solutionu5 l 0 of the equation

exp@b1~12u!#21

b1
5

exp@b2~11u!#21

b2
. ~3!

It follows from Eq. ~3! that the barrier top is shifted to th
left ( l 0,0) if b1,b2 and vice versa, it is shifted to the righ
( l 0.0) if b1.b2 . In particular, we choose the value
b150.5 andb255.0 and then we find that the frequency
the oscillations of the particle in the left wellV159.23 ex-
ceeds the frequency of the oscillations in the right w
V251.46 by one order. These parameter values are u
throughout this paper in numerical computations. In the p
ticular caseb15b25b we havel 050 and the function~2! is
reduced to the symmetric form

V~u!5Fa2cosh~bu!

a21 G2

, a5coshb, ~4!

used before in a number of studies on the proton transpo
hydrogen-bonded chains@18,19#. In the limit b→0, the po-
tential ~4! takes the form of the well-knownf4 potential
limb→0V(u)5(12u2)2.

It is convenient to use the dimensionless time and lat
field according to

t5A«0 /mt/a, un~t!5xn~ t !/a, ~5!

respectively. Then the Hamiltonian~1! can be rewritten in
the dimensionless form as

H5
H

«0
5(

n
F1

2 S dun

dt D 2

1
1

2
g~un112un!21V~un!G

~6!

FIG. 1. Form of the AB potentialV(u) with the parameter val-
uesb150.5 andb255 ~solid line!. For comparison, the form of the
symmetric double-well potential withb15b250.5 is also presented
~dashed line!.
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56 2459REVERSAL EFFECTS IN STOCHASTIC KINK DYNAMICS
where the dimensionless ‘‘cooperativity’’ paramet
g5ka2/«0 has been introduced to describe the magnitude
the interparticle interaction compared to the barrier heig
We also call the parameterg the dimensionless intersite cou
pling.

When the AB chain is brought into contact with a stoch
tic bath, its dynamics is described by the system of
coupled Langevin equations

d2un

dt2 5g~un1122un1un21!2V8~un!1 f 2g
dun

dt
1hn ,

n50,61,62,..., ~7!

written in the dimensionless form@see the Hamiltonian~6!#.
Here f is a dimensionless constant external forc
g5aAm/«0/t r is the dimensionless friction coefficient wit
t r being the relaxation time, and the dimensionless rand
force hn describes the interaction of thenth chain particle
with the stochastic bath. The forceshn are supposed to b
independent at differing chain sites and they are defined
the correlation functions

^hn1
~t1!hn2

~t2!&52Dgdn1n2
w~t12t2!, ~8!

whereD is the dimensionless noise strength and the auto
relation functionw~t! is normalized by*2`

` w(t)dt51. For
white noisew(t)5d(t) ~D5kBT/«0 , where kB is Boltz-
mann’s constant andT is the thermal bath temperature!,
whereas for the exponentially correlated noise

w~t!5~l/2!exp~2lutu!. ~9!

Herel51/tc , with tc being the~dimensionless! correlation
time of the random forceshn .

III. STANDING SOLITON STATES
AND A PEIERLS-NABARRO RELIEF

To find standing soliton~kink and antikink! profiles and
the corresponding Peierls-Nabarro~PN! relief @20#, we solve
the minimization problem

E5(
n

F1

2
g~un112un!21V~un!G→ min

u2 , . . . ,uN21

, ~10!

with the boundary conditionsu1521 anduN51 ~kink! or
u151 anduN521 ~antikink!. Numerically, it is convenient
to define the soliton center position

nc5
1

2
1 (

n51

N21

npn ~11!

and the soliton width

D5112A(
n51

N21 S n1
1

2
2ncD 2

pn, ~12!

where the sequencepn5uun112unu/2, n51,...,N21, de-
scribes the distribution of chain deformation.

The minimization problem~10! was solved numerically
by the method of conjugated gradients for the chain cons
f
t.

-
e

,

m

y

r-

t-

ing of 400 particles. The solution of this problem allows
to find only stable states of a standing kink~or antikink!.
Kink profiles can be obtained from antikink profiles simp
by the symmetric mapping and their form is always asy
metric. To find other~unstable! kink profiles as well as a
dependence of the kink energy on the position of its cen
i.e., a PN relief, we fix a certain valueuN/2P(21,1) ~fixing
by this a corresponding kink centernc! and minimize the
energy ~10!, assuming the rest of variablesun to be free.
Varying monotonically the variableuN/2 , we obtain a mono-
tonic change of the kink positionnc ~a kink center position is
uniquely determined byuN/2!. As a result, one calculates th
dependenceE5E(nc).

The solution of the minimization problem~10! has shown
that the PN relief is a periodic potential with the period equ
to 1, i.e., the chain spacing. The PN potential minim
e16n (0<e1,1) correspond to stable states of the stand
kink solution, while the maximae26n (e1<e2,e111) are
unstable kink states. The difference of these energies~i.e.,
the amplitude of the PN relief! DE5E(e2)2E(e1) gives a
pinning energy of the kink or antikink to the chain, viz., th
activation energy for kink motion.

The PN relief for two casesg51 andg510 is shown in
Fig. 2. For weak couplings (g51), the reliefE(nc) has an
asymmetricprofile and the asymmetry practically vanish
with increasing the couplingg. It is useful to define the
parameter of the relief asymmetry bys52(e22e1)21
(21<s<1). Thus, for the antikink in the chain with
g51, we havee150.06, e250.36, ands520.39; in the
caseg510, these parameters aree150.22, e250.69, and
s520.07. For the kink, the asymmetry of the potential r
lief has the other sign~the maxima are shifted to the right!:
e150.94, e251.64, ands50.39 if g51 and e150.78,
e251.31, ands50.07 if g510.

The energyE(g) and the widthD(g) of the standing kink
~antikink! solution monotonically increase with the grow
of the coupling parameterg ~proportionally toAg!, while the
pinning energyDE(g) exponentially tends to zero as illus

FIG. 2. PN potential reliefE(nc) for the antikink~solid line! and
the kink ~dashed line! for ~a! g51 and~b! g510.
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2460 56A. V. SAVIN, G. P. TSIRONIS, AND A. V. ZOLOTARYUK
trated in Fig. 3. In the chain with weak cooperativityg the
kink ~antikink! is pinned and requires the activation ener
DE to be transferred to the next chain site. For instan
DE50.57 if g51 andDE50.04 for g510. For weak cou-
plings g, the kink ~antikink! propagates like the Brownia
particle, carrying out thermally activated jumps over the b
riers of the PN relief. When the couplingg is sufficiently
strong (g>100), the PN relief is practically absent. In th
case, the kink can propagate with permanent velocity
profile.

IV. NONZERO TEMPERATURE KINK DYNAMICS IN
THE DISPLACIVE LIMIT

In thedisplacivelimit ~for the chains with strong interpar
ticle coupling, e.g.,g>100!, the kinks ~and antikinks! can
propagate with permanent velocity and shape. In the unt
malized chain (D50) with g50 and f 50, both the direc-
tions of soliton motion are completely equivalent. Howev
due to the asymmetry of the kink~antikink! profile as men-
tioned in the preceding section, some specific~asymmetric!
properties of the interaction between the kink being place
the left and the antikink being placed to the right compa
to the opposite situation might appear. Clearly, there is
difference in this interaction in the case of any symme
function V(u). Let us find the effective potentials of bot
these interactions, which we denote byEAK ~if the antikink is
situated to the left, whereas the kink is found

FIG. 3. Dependence of~a! the energyE of the stable standing
kink state,~b! the kink widthD, and~c! the pinning energyDE on
the coupling parameterg.
,

-

d

r-

,

to
d
o
c

the right! and EKA in the opposite case. Obviously
EAK5EKA for a symmetric potentialV(u).

To find each of these effective potentials, we solve
minimization problem~10! with the conditions that fix the
boundary particles either in the left~KA interaction! or in the
right ~AK interaction! well and additionally the middle par
ticle of the chain@say, the (N/2)th particle# is supposed to be
fixed. Thus, for the AK interaction we define the bounda
conditions asu15uN51 and fix a certain value of the dis
placementuN/2 . Let $un

0%n51
N be a solution of this minimiza-

tion problem. Varying then the displacement valuesuN/2
from 2110 to 1`, we can study the dependence of t
interaction energyEAK on the distance between the antikin
and kink defined by

R5RAK5
1

2 (
n51

N

~12un
0!. ~13!

When un
051, we haveEAK50 and the distanceRAK50.

WhenuN/2→2110, the energyEAK→2E0 and the distance
RAK→1`, whereE0 is the energy of the standing kink~or
antikink!. Next, EAK→1` andRAK→2` if uN/2→1`.

To find the interaction energyEKA , we have to solve the
same problem~10!, but with the boundary conditions
u15uN521. In this case, we vary the displacementuN/2
from 1120 to 2`. Now the distance between the kink an
antikink is given by

R5RKA5
1

2 (
n51

N

~11un
0!. ~14!

In this case,EKA→2E0 andRKA→1` if uN/2→1120. At
uN/2521, we haveEKA50 andRKA50. Also, EKA→1`
andRKA→2` if uN/2→2`.

The minimization problem~10! was solved for both the
AK and KA interactions at the following chain parameter
g5256, N5500, b150.5, andb255. The effective poten-
tials EAK(R) and EKA(R) are plotted in Fig. 4. As follows

FIG. 4. Effective potential of the interaction of the antikink wit
the kink @EAK(R), curve 1# and of the kink with the antikink
@EKA(R), curve 2# in the chain withg5256,b150.5, andb255.



ia
te
ce

ed
o

is

tly
v

.

of

s
e

e
e

an
s

k
-
s
-

in
ti

ions

he
s
rly,
id-

cal-
n

et
the
n-
he
ti-

the
r-

c-
ell

an
l

tral
l

56 2461REVERSAL EFFECTS IN STOCHASTIC KINK DYNAMICS
from this figure, the asymmetry of the double-well potent
results in an essential difference in the form of these po
tials. Such a difference should give rise to a different s
nario of the AK and KA collision processes.

To study the kink-antikink interaction dynamics, we ne
to have appropriate initial conditions for the simulations
the equations of motion~7! for the case when the chain
isolated, i.e.,f 50, g50, andhn[0. We look for solitary
wave solutions of permanent profile that are sufficien
smooth from site to site and propagate with a constant
locity s. In this case, settingun(t)5u(n2st), we can ap-
proximately substitute the time derivativeun9(t) in Eq. ~7! by
the spatial difference derivatives2(un1122un1un21). As a
result, we obtain the discrete algebraic equation

~s0
22s2!~un1122un1un21!2V8~un!50, ~15!

where s05Ag is the velocity of small-amplitude waves
Therefore, soliton solutions to Eq.~15! can be found by
minimization of the corresponding (N22)-dimensional La-
grangian function

L5L$un ;s%5 (
n51

N F1

2
~s0

22s2!~un112un!21V~un!G
~16!

over all the variablesu2 ,...,uN21 and fixing the appropriate
boundary conditionsu1521 and uN51 for a kink and
u151 anduN521 for an antikink.

Let $un
0% be a solution obtained under the minimization

the function~16!. Then

un8~t!52s~un11
0 2un

0! ~17!

is the velocity of thenth particle and

E5 (
n51

N21 F1

2
~s0

21s2!~un11
0 2un

0!21V~un
0!G ~18!

is the soliton energy. The soliton widthD is defined by the
same equations~11! and ~12!. According to these equation
as well as Eqs.~17! and ~18!, we calculated the dependenc
of the energy E and the widthD on the velocity s,
0<s,s0 . We have obtained that with the growth of th
velocity s, the energyE increases monotonically and th
width D decreases monotonically. Ass→s05Ag, we have
E→` andD→1.

Using the results of the minimization of the Lagrangi
~16!, we carried out simulations of the AK and KA collision
in the chain withN5500 andg5256. These simulations
have shown that the KA collision results in the kink-antikin
recombination for velocitiess<0.6s0 and their elastic reflec
tion if s>0.7s0 . On the other hand, the AK collision wa
shown to result in only antikink-kink recombination pro
cesses.

V. STOCHASTIC DYNAMICS OF THE CENTRAL
PARTICLE OF A KINK

Let us assume now that an initially prepared standing k
~or antikink! state is subjected to the action of a stochas
l
n-
-

f

e-

k
c

bath and damping through the coupled stochastic equat
of motion ~7!. Consider only thecentral particle of the kink
~or antikink!. On the one hand, this particle moves in t
asymmetric potentialV(u) and, on the other hand, it i
coupled to its adjacent nearest-neighboring particles. Clea
the central particle at a given instant of time can be cons
ered as moving in some effective double-well potentialU(u)
as shown in Fig. 5~a!, which depends on the bias forcef and
the interparticle coupling parameterg. This potential can be
calculated explicitly and the procedure resembles that of
culating the PN relief. Initially, by solving the minimizatio
problem~10! for a kink or an antikink, we fix the two stable
kink ~or antikink! configurations of the variablesu1 ,...,uN ,
which are simply shifted by one period of the PN relief. L
the first configuration correspond to the case when
(N/2)th particle is situated around the left well of the pote
tial V(u) and the second one when this particle is in t
vicinity of the right well @the latter case is shown schema
cally in Fig. 5~b!#. Then we vary continuously theuN/2th
displacement, keeping the rest of the variables in each of
two kink ~or antikink! states. As a result, we get two diffe
ent effective potentialsU1(u) and U2(u) for the (N/2)th
particle being placed in the left and the right well, respe
tively. Obviously, each of these potentials has a double-w
form if the couplingg is not very large~discrete regime!, but
the depth of the left well ofU1(u) and that of the right well
of U2(u) will be different, in general. Finally, ‘‘sewing’’
these wells~the left half ofU1 and the right half ofU2! at
their barrier tops, we obtain the effective potentialU(u),
which appears to benondegenerate, since the depth of the
left well of U1 differs from that of the right well ofU2 . As
follows from Fig. 5~a!, the right ~low-frequency!

FIG. 5. Results of calculations for the central particle of
antikink atg51: ~a! the double-well form of the effective potentia
U(u) with nondegenerate local minima and~b! the schematic rep-
resentation of the corresponding antikink solution with the cen
particle~white ball! located in the right well of the on-site potentia
V(u).
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2462 56A. V. SAVIN, G. P. TSIRONIS, AND A. V. ZOLOTARYUK
minimum now becomes a ground state with the lowest
ergy: U( l 1).U( l 2). The local minima atu5 l i labeled by
the indexi , i 51 ~left! andi 52 ~right!, as well as the barrie
top position l̄ 0 of the ‘‘dressed’’ potentialU(u) are dis-
placed from the corresponding stationary points of
‘‘bare’’ potential V(u), as can be seen by a comparison
Figs. 5~a! and 5~b!. Note that the nondegeneracy of the p
tential U(u) is due to the asymmetry of the potentialV(u),
while for a symmetric functionV(u) the corresponding po
tential U(u) is always symmetric. The frequencies of sma
amplitude oscillations at the local minima given b
v1,25AU9( l 1,2) are also different and their difference va
ishes with the growth of the couplingg. On the other hand
the dressed frequenciesv i tend to the bare frequenciesV i
defined through the on-site potentialV(u) if g→0. As a
result of the linearization around each of these local minim
two parabolic potentials arise with the frequenciesv i . Due
to the frequency disparity and nondegeneracy, the reside
probability of the central particle in each local minimum
the effective potentialU(u) will be different. We evaluate
the relative residence probabilities by using the Kram
theory and use the term ‘‘stochastic ground state’’ to refe
the minimum where the particle spends more time or has
averaged residence probability exceeding 1/2.

Let p be the probability of finding the central particle
the left minimum. Besides the ratiov1 /v2 , this probability
depends on the noise intensityD and correlation timetc . In
order to investigate the dependence ofp on these parameters
we consider the effective single-particle equation for s
chastic oscillations of the (N/2)th particle in each paraboli
potential well. Denote the stochastic fielduN/221 by ū1 and
uN/211 by ū2 . Then, according to Eq.~7!, the linearized
stochastic equation for the central particle becomes

ū1,29 1v1,2
2 ū1,21gū1,28 5h, ~19!

where the random forceh~t! satisfies the correspondin
single-particle covariance given by@see Eq.~8!#

^h~t1!h~t2!&52Dgw~t12t2!. ~20!

Using Eqs.~19! and ~20!, the total ~kinetic and potential!
averaged energy of the stochastic oscillations in each
( i 51,2) can be represented as the sum

^Ei&5Ki1Pi5 lim
t→`

1

t E
0

t F1

2
~ ūi8!21

1

2
v i

2ūi
2Gdt

5DgE
2`

`

~v21v i
2!uRi~v!u2F~v!dv, i 51,2,

~21!

where

R1,2~v!5
1

v1,2
2 2v22 igv

~22!

is the response function of the Langevin equation~19! and
the Fourier transform is defined by
-

e
f
-

,

ce

s
o
n

-

ll

F~v!5
1

2p E
2`

`

w~t!e2 ivtdt. ~23!

For the exponentially correlated noise defined by Eq.~9!, the
Fourier transform is simply the Lorentzian

F~v!5
l2

2p~l21v2!
. ~24!

Using the explicit expressions~22! and ~24!, by straightfor-
ward contour integration we find the averaged values of
kinetic energy

Ki5
1

2
D

l2

l21lg1v i
2 ~25!

and of the potential energy

Pi5
1

2
D

l2~l22g21v i
2!1lgv i

2

~l21v i
2!22g2l2 . ~26!

In the limiting case of infinitely small frictions (g.0), the
expressions~25! and ~26! are essentially simplified, so tha
the total averaged energy becomes

^E1,2&5Dl2/~l21v1,2
2 !. ~27!

The expression ~27! together with the depths
DUi5U( l̄ 0)2U( l i), i 51 ~left! andi 52 ~right!, allows one
to determine which well of the on-site potentialV(u) is vis-
ited more often by the particle, being the stochastic grou
state at given values ofD andl. As a result, we obtain the
dependence of the left~right! well residence probability on
the correlation timetc . Indeed, the rate of the particle tran
fer from the left (i 51) or right (i 52) minimum to the other
one is

pi5
v i

2p
expF2

DUi

^Ei&
G . ~28!

Therefore, the probability of finding the particle in the le
well is

p5
1

11A
,

A5
p2

p1

5
v1

v2
expF2

DU12DU21~v1
2DU12v2

2DU2!tc
2

D G .
~29!

We note that whenA51 both the minima are probabl
equally (p51/2); using this property, we can find analyt
cally the critical noise correlation timet0 that signals the
reversalof the stochastic ground states:

t05AD ln~v1 /v2!2~DU12DU2!

v1
2DU12v2

2DU2
. ~30!
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The value t0 determines the correlation time, for value
larger ~smaller! of which the left~right! potential minimum
becomes more probable. As a result, the left~right! minimum
is a stochastic ground state fortc.t0 (tc,t0). At zero
noise strength (D50) and without a bias field (f 50), the
right ~low-frequency! well is always a stochastic ground sta
(t050). At nonzero noise strengths, a ‘‘freezing’’ of high
frequency oscillations occurs whentc.0 and this effect is
stronger for the left~high-frequency! well. As a result, the
probability p of finding the particle in the left minimum in
creases with the growth of the noise correlation timetc ,
reaching the value 1/2 attc5t0 and exceeding it for all
tc.t0 .

Thus, having calculated the effective potentialU(u) ~in
fact, we need to know only the effective frequenciesv1,2 and
depthsDU1,2!, we can conclude which~left or right! well is
a stochastic ground state. In other words, one can determ
the direction of preferential particle transfers over the bar
separated by the minima of the on-site potentialV(u). This
knowledge ~about the residence probability of the cent
particle! immediately allows one to determine the directi
of the drift of the kink as a whole object. Indeed, when
kink propagates to the right~left! end of the chain, its centra
particle is transferred from the right~left! well to the left
~right! one. The opposite situation with the directions ho
for an antikink. Summarizing, one can conclude that the
rection of motion of the central particle is opposite~along!
the direction of the kink~antikink!. Therefore, if the reversa
of the stochastic ground state for the central particle occ
then the corresponding reversal effect takes place for
kink and antikink motion. For a giventc , only one of the
minima is more probable and therefore it becomes the
responding stochastic ground state; this leads to thedirected
kink motion, i.e., to symmetry breaking the Brownian m
tion of kinks and antikinks. Furthermore, this analysis sho
that kinks and antikinks propagate inoppositedirections, re-
spectively. Thus, varying the noise properties such as
correlation timetc or the strengthD, the reversal of the
stochastic ground state occurs, leading to the reversal o
direction of kink~antikink! propagation. Note that, accordin
to Eq. ~30!, the reversal timet0 depends on the nois
strengthD. This dependence can be calculated explicitly a
some results are given in Table I.

The reversal effect occurs for sufficiently small values
the couplingg since with increasingg, the disparity of the
effective frequenciesv i and the depthsDUi decreases and
as a result, the switching~reversal! time t0 monotonically
tends to infinity@see Eq.~30!#. Hence the cooperativity o
the chainopposesthe reversal effect and for sufficientl
large g it disappears, though the double-well form of th
effective potentialU(u) still exists. More precisely, for
tc,t0 , we havep(tc),1/2 and, as a result, the kink~anti-
kink! should propagate to the left~right!, while for tc.t0
we obtain p(tc).1/2 and now the kink~antikink! should
move to the right~left!. Indeed, at the valuesb150.5 and
b255 we obtainedp(tc),1/2 for all reasonable values o
the correlation timetc if g>1.5. Note that for a symmetric
double-well potential (b15b2), the probabilityp is always
1/2 and therefore the stochastic vibrations cannot give ris
a directed kink~antikink! motion.

Thus, in the chain with an on-site AB potential, we ha
ne
r

l

s
i-

s,
e

r-

s

e

he

d

f

to

two counterbalancing factors. On the one hand, the inter
ticle coupling g results in effective increasing the high
frequency minimum of the potentialU(u) and this circum-
stance, in turn gives rise to the decreasing the probability
particle transfers from the low-frequency well to the hig
frequency one. Note that in the potentialV(u) this probabil-
ity is always less than 1/2. On the other hand, the presenc
a nonzero corellation timetc results in effective freezing ou
high-frequency oscillations and this is exhibited in decre
ing the probability of particle transfers from the high
frequency~left! well to the low-frequency~right! one. There-
fore, the direction of the noise-induced motion of the kink
determined by these factors. When the couplingg is suffi-
ciently weak, the growth of the correlation timetc results in
switching the direction of kink motion, but for strong cou
plings g the kink motion direction does not depend on t
correlation timetc .

VI. NUMERICAL RESULTS

Consider a finite AB chain with fixed ends and consisti
of N particles. The chain is assumed to be driven by ex
nentially correlated noise, including white noise as a parti
lar case, so that its dynamics is described by the set of e
tions ~7!–~9! where n51,2,...,N. However, for numerical
studies of the dynamics of the chain particles driven by c
ored noise, it is convenient to substitute Eqs.~8! and ~9! by
the first-order stochastic equations

dhn

dt
5l~jn2hn!, n50,61,62,..., ~31!

where thejn(t)’s are normally distributedd-correlated ran-
dom forces@21#, i.e.,

^jn1
~t1!jn2

~t2!&52Dgdn1n2
d~t12t2!. ~32!

First, we consider the stochastic vibrations of the chain
one of the ground states, whenun521 or un51 for all
n51,...,N. The asymmetry of the potentialV(u) should re-
sult in the difference of the dynamics of the chain particles
these ground states. Indeed, the asymmetric ground s
have different spectra of small-amplitude oscillations, vi
@V i ,AV i

214g#, i 51,2. Let us define the dimensionles
thermal capacity byci5^Ei&/D(N22) for each of the
ground states. Note that for the system with harmonic for
and white noise the dimensionless thermal capacity is alw
1. The presence of an anharmonicity leads to some de

TABLE I. Dependence of the reversal time for the stochas
ground statest0 on the noise strengthD.

D t0

0.1 0.047
0.2 0.067
0.3 0.082
0.4 0.094
0.5 0.105
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dence ofc1,2 on the noise strengthD and the presence of
nonzero correlation timetc also implies a dependence o
this parameter.

Besides the valuesb150.5 andb255, we take throughou
the present paperg50.1. We look for the dependence o
c1,2 on the correlation timetc at different values of the cou
pling g. To this end, we integrate numerically the system
equations~7! and ~31! with the correlation equations~32! at
the initial conditionsun(0)[21, un8(0)[0 andun(0)[1,
un8(0)[0 with N5100 andf 50. The results of these simu
lations are presented in Table II. As follows from these
sults, attc.0 the right ground state has higher capacity th
the left one. The ratioc2 /c1 increases monotonically with
the growth oftc . The reason for this behavior is that th
spectrum of small-amplitude oscillations atun[1 is below
the spectrum of oscillations atun[21 ~see Table III!.
Therefore, the increase of the correlation timetc leads es-
sentially to freezing high-frequency vibrations at the st
un[21. With increasing the couplingg, the relative shift of
the spectra of small-amplitude oscillations is reduced and
a result, the ratioc2 /c1 is also decreased. The growth of th
couplingg leads to a gradual equalization of the capacities
the ground states~c2 /c1→110 wheng→`!.

Consider now the kink dynamics. We choose the init
conditions for the system of equations~7! and ~31!, which
correspond to the stable standing kink~antikink! state, i.e.,
un(0)5un

0 andun8(0)50, wheren51,2,...,N and$un
0%n51

N is
a solution of the minimization problem~10!. First, we fix the
central particle of the kink, which is the closest to the top
the barrierl 0 , and then simulate Eqs.~7! and~31! during the
time intervalt5500. This time is sufficient for the chain t
come to thermal equilibrium with the bath, but the kink itse
is not yet allowed to move. After this time period, we allo
the fixed particle to move and observe the kink motion in
thermalized chain. To this end, we define the kink cen

TABLE II. Dependence of the dimensionless thermal capaci
c1,2 of the ground statesun[71 on the correlation timetc at
g51 andD50.1, g510 andD50.2, andg5100 andD50.2.

g51, D50.1 g510, D50.2 g5100, D50.2
tc c1 c2 c1 c2 c1 c2

0.01 1.027 0.975 1.032 0.992 1.002 0.980
0.1 0.550 0.930 0.511 0.815 0.305 0.433
0.2 0.228 0.825 0.200 0.568 0.104 0.219
0.3 0.114 0.731 0.100 0.410 0.050 0.142
0.4 0.069 0.617 0.057 0.309 0.030 0.099
0.5 0.045 0.501 0.038 0.233 0.019 0.076
0.6 0.032 0.415 0.027 0.187 0.013 0.058

TABLE III. Dependence of the spectra of small-amplitude o
cillations @V i ,AV i

214g#, i 51,2, on the interparticle couplingg.

g V1 AV1
214g V2 AV2

214g

0 9.23 9.23 1.46 1.46
1 9.23 9.44 1.46 2.48

10 9.23 11.19 1.46 6.49
100 9.23 22.03 1.46 20.05
f

-
n

e

as

f

l

f

e
r

nc as an intersection point on the (n,u) plane of the line
connected the points$(n,un)%n51

N with the lineu5u0 .
The existence of the reversal of soliton motion predic

through the analytical arguments of Sec. V was confirmed
the numerical simulations for the parameter valuesN5100,
g51, D50.2, andf 50. Their results are illustrated in Fig
6. In the simulations we observed that at smallg, the kink
and antikink are mainly standing and only very rarely
they jump randomly to the nearby lattice sites. At small c
relation timestc , including also white noise (tc50), the
contact with the thermal bath moves the kink~antikink! to
the left ~right! as shown by path 1~2! in Fig. 6. An increase
in the noise correlation timetc results in a change in the
direction of their motion as demonstrated by paths 3 and
Fig. 6. This behavior of kinks and antikinks is in agreeme
with the results of Sec. V, where we have predicted the
versal of the stochastic ground state of the chain with su
ciently weak interparticle couplingg at a certain value of the
correlation timetc . This behavior is explained by the stron
ger freezing~with the increase oftc! of the high-frequency
stateun[21 compared to that of the low-frequency sta
un[1 ~see Table II!.

However, in the case of stronger cooperativity (g510),
the numerical simulations of Eqs.~7! and ~31! with f 50
have demonstrated the absence of the reversal effect. T
the kink ~antikink! propagation is directed only to the le
~right!, independently on the correlation timetc . In this
case, the growth oftc results only in the gradual reduction o
the averaged kink velocity, not reaching the reversal effe
The antikink motion for this case is shown in Fig. 7. Agai
these results are in agreement with the theory given in S

FIG. 6. Noise-induced motion of a kink~curves 1 and 3! and an
antikink ~curves 2 and 4! in the chain with N5100, g51,
b150.5, b255, t r510,b50.2, andf 50 attc50 ~curves 1 and 2!
andtc50.3 ~curves 3 and 4!.
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V. Note that with an increase of the couplingg, the effect of
the stronger freezing of the high-frequency ground state t
of the low-frequency one, which provides atg51 the change
of the direction of motion, is reduced~see Table II!. The
velocity of noise-induced kink motion is increased with
decrease of the correlation timetc .

When a constant driving forcef is present, the minima o
the total on-site potentialV(u)2 f u become nondegenerat
We consider the case of sufficiently strong cooperativ
~e.g.,g510! when the reversal associated with varyingg is
absent. White noise is considered as a particular case. T
if f .0, a kink~antikink! moves along the field, i.e., the kin
~antikink! propagates to the left~right! at any noise strength
D. Similarly, in the casef ,0, but for sufficiently small
noise strengthsD, the soliton motion occurs along the fie
f . However, with increasingD, this motion becomes slowe
and slower and at a certain critical temperatureD0( f ) the
soliton comes to a stop. A further increase of the no
strength gives rise to the kink motion in the opposite dir
tion, i.e., against the applied dc forcef . As follows from
Eqs.~29!, even in the limiting case of white noise (tc50),
the soliton motion can occur against the fieldf . The presence
of the asymmetryv1Þv2 appears to be a sufficient cond
tion for soliton propagation against an external dc field.
the case of the antikink dynamics, this reversal effect is
lustrated in Fig. 8. Here, atf 520.05, tc50, and the noise
strengthsD50,0.05,0.1, the antikink propagates to the le
while for the valuesD50.15,0.2,0.3, it moves to the righ
We note that kinks or antikinks can propagate against
driving dc forcef only if the external force does not excee
a certain threshold valuef 0(D). Thus we have observed~see
Fig. 9! that atD50.2 andtc50, the antikink propagates t

FIG. 7. Noise-induced motion of an antikink~N5400, g510,
b150.5, b255, t r510, b50.2, andf 50! at tc50, 0.1, 0.2, 0.3,
0.4, 0.5, and 0.6~curves 1, 2, 3, 4, 5, 6, and 7, respectively!.
n

y

en,

e
-

l-

,

e

FIG. 8. Thermally activated motion of an antikink at the pre
ence of an external forcef 520.05 in the chain withN5400,
g510,b150.5, b255, t r510, andtc50 ~white noise! at tempera-
turesD50, 0.05, 0.1, 0.15, 0.2, and 0.3~curves 1, 2, 3, 4, 5, and 6
respectively!.

FIG. 9. Same motion@N5400, g510, b150.5, b255,
t r510, tc50 ~white noise!, andD50.2# under the external force
f 50, 20.05,20.1, and20.15~curves 1, 2, 3, and 4, respectively!.
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the right ~against the driving forcef ! if f 50,20.05 and to
the left ~along the fieldf ! if f 520.1,20.15.

VII. SUMMARY AND OUTLOOK

The reversal of the directed diffusive soliton motion in t
kink-bearing model with the on-site potential of an asy
metic double-well form was shown to appear due to t
counterbalancing factors. On the one hand, the interpar
coupling results in an effective lifting of the high-frequen
minimum of the on-site potential and this in turn gives rise
a decrease of the probability for the particle transfers fr
the low-frequency well to the high-frequency one. Note th
this probability is always less than 1/2 if the chain partic
are driven by white noise. On the other hand, the nonz
correlation noise results in effective freezing out hig
frequency oscillations and this is exhibited in the decreas
probability of the particle transfers from the left well to th
right one. Therefore, the direction of the noise-activated s
ton motion is determined by these factors. It is worth me
tioning that the reversal of the directed soliton motion c
also be induced by other counterbalance factors. Thus,
particular shapes of the asymmetric periodic potential
reversal effect has been observed recently for the sin
particle motion@17#. In this case, the change of the current
caused by specific shapes of the ratchet periodic potentia
more precisely, by the proper interplay of its higher deriv
tives.

The collective effect of rectifying the soliton motion th
was shown to be induced by a noise correlation and
strength on topological solitons is generic and not parti
larly sensitive to the on-site potential details. It is necess
for the effect to take place to have an on-site potential
generacy accompanied by some potential asymmetry.
found that in the case of asymmetric double wells, kinks a
antikinks move in opposite directions even in the presenc
S
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white noise, while colored noise of sufficient correlation r
sults in direction reversal. Therefore, the asymmetry of
double-well potential is a sufficient ingredient for directe
soliton transport. The kink motion in the presence of wh
noise does not contradict the second law of thermodynam
since the initial states are not in equilibrium and the kin
can travel only once through the system. In a finite perio
lattice an initially created kink-antikink pair would travel i
opposite directions and self-annihilate after reencounte
each other, bringing thus the lattice into thermal equilibriu
The effects presented are relevant when ambient tempera
is much smaller than the soliton bindiny energy; a numbe
interesting questions arise if we consider higher temperat
where kink-antikink annihilation and nucleation take pla
@22,23#.

The soliton reversal effect can have a variety of appli
tions in kink-bearing systems with some on-site asymme
Thus the contact with a thermal bath can either speed u
slow down transport processes or even reverse them at
tain critical values of temperature. Such a high sensitivity
transport mechanisms to temperature can be used by a
system for its thermal control. For instance, lowering te
perature can result in a charge current for the transforma
of chemical into thermal energy. Thus one can conclude
taking into account the realistic asymmetry of biomolecu
systems might help in understanding the primary mec
nisms of their functioning.

ACKNOWLEDGMENTS

The work was carried out with the financial support fro
the European Economic Community under the INTAS Gr
No. 94-3754. A.V.S. and A.V.Z. are indebted to the hos
tality of the Physics Department of the Crete University a
the Research Center of Crete where the main part of
work was carried out.
tt.

ca

ate
@1# J. A. Krumhansl and J. R. Schrieffer, Phys. Rev. B11, 3535
~1975!.

@2# S. Aubry, J. Chem. Phys.62, 3217~1975!; 64, 3392~1976!.
@3# For a review see, e.g., A. R. Bishop, J. A. Krumhansl, and

E. Trullinger, Physica D1, 1 ~1980!.
@4# J. F. Nagle, M. Mille, and H. J. Morowitz, J. Chem. Phys.72,

3959 ~1980!.
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@22# M. Büttiker, Z. Phys. B68, 161 ~1987!.
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