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Reversal effects in stochastic kink dynamics
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We study collective regular and stochastic dynamics in a chain of harmonically coupled particles subjected
to an on-site potential with two degenerate energy wells but with differing frequencies of small-amplitude
oscillations at their minima. We identify and study asymmetry-induced properties of a Peierls-Nabarro relief,
kink-antikink interactions, and stochastic kink motion. In particular, we predict analytically and confirm nu-
merically directed noise-induced soliton motion when the chain particles are driven by white and exponentially
correlated noise. The difference of frequencies of oscillations in the vicinity of the wells is shown to be a
sufficient condition for the existence of such a directed kink motion. We find that under certain conditions a
reversal of the soliton motion takes place; these conditions involve the noise properties such as a critical
correlation time or noise strength or the presence of an external d.c. field. In particular, we find that above some
critical value of temperature, the directed soliton transport occurs against an applied d.c. field.
[S1063-651%97)07508-9

PACS numbg(s): 05.40:+j, 03.20:+i, 43.50+y, 46.10:+z

I. INTRODUCTION tem asymmetric. As a result, the model potential for the pro-
cess is indeed bistable and asymmetric one. This structural
Since the pioneering work of Krumhansl and Schriefferasymmetry is not unexpected and it appears in other complex
[1] and Aubry[2] on the dynamics of topological solitons biomolecular systems where bistability is a result of the ex-
(kinks and antikinks in the ¢* field theory, there has been istence of pairs of similar but not identical building blocks.
great interest in applications of this theory in condensed mat- Single-particle stochastic symmetry-breaking phenomena
ter physics and biolog}8]. A chain of harmonically coupled have recently seen an explosion of interest of physicists since
particles each subjected to the loc@n-sit9 symmetric their original appearance a few years ago in the context of
double-well potential is adopted to be a basic model in thesenolecular motor§6—13. The symmetry-breaking effect in-
studies due to its simplicity as well as the existence of anayolves adirectedmotion of a single particle in ansymmet-
lytical soliton solutions. We note that the majority of mate-ric periodic potential under the influence of noise fluctua-
rials with strong quasi-one-dimensional anisotropy admittingions that have some correlation property. The macroscopic
the existence of topological defects have indeed a relativelynanifestation of such a preferential motion of independent
simple structure without any asymmetry of the on-site potenparticles is through the appearance of a nonzero particle

tial. For instance, in a hydrogen-bonded chaX—(H)..,  (probability) current. Thisratcheteffect seems to be generic
whereX is one of the atoms O, F, Cl, or Br, both the ground-in the context of single-particle stochastic dynamics in peri-
state configurations: - - X—H- .- X—H...X—H--- and odic but anisotropidasymmetrig potentials[8]. Since the

- -H—X..-H—X..-H—X- .- are completely equivalent, topological soliton state in the kink-bearing family can be
both energetically and structurall]. Asymmetry is absent considered simply as an effective single partifled], it
in such systems and the top of the on-site double-well potenwould be expected that the ratchet effect takes place also for
tial is situated at the midpoint of the hydrogen bond. How-solitons moving in an asymmetric periodic on-site potential.
ever, topological defects can also exist in more complex conRecently, the stochastic ratchet effect has been extended to
densed matter and biomolecular objects, e.g., in microtubuleghe soliton cas¢l15,16. Marchesoni in particular has shown
[5]. In the latter case, an electron moving in a tubulin dimerthat a stationary noise-induced current of kinks and antikinks
can reside in either tubulin monomer, viz., in theor 8 in opposite directions exists as a function of the naisge-
monomer. The resulting two-minima relief separated by dation timeand the kink-antikinkasymmetryf15].
maximum configuration of the electron dipole moment has The present paper aims to study in detail the regular and
been described through a symmetric double-wéfl)(poten-  stochastic kink dynamics in the other class of kink-bearing
tial [5]. This model provides a simplification for the electron models where the on-site potential is an asymmetoiable-
transfer process. One could argue that structural differenceell function with degenerateninima[16]. More precisely,
between thex and 8 tubulin monomers as well as the ac- the asymmetry of the double-well potential means that the
companying conformational changes of the monomer frequencies of small-amplitude oscillations at the potential
while the electron resides in this monomer renders the sysminima aredifferent In such a case of bounded motion, no
stationary current of kinks and antikinks in the same direc-
tion can exist as in the case of a periodic poterjti&l. The
*Also at the Institute for Problems of Physics and Technology,basic question is now as to whether preferential Kiakti-

119034 Moscow, Russia. kink) motion occurs as well as the detailed conditions for
TAlso at the Bogolyubov Institute for Theoretical Physics, 252143such directed kinkantikink) motion. We will show that such
Kyev, Ukraine. a motion does indeed take place not only with colored noise,
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as in Ref[15], but also in the presence of white noise. This
result is not in contradiction with the second law of thermo-
dynamics; it simply expresses the fact that our kink-bearing
system is not truly in thermodynamic equilibrium.

1.5

The main point of our studies in this paper is to describe
the factors that determine the direction of stochastic soliton S’
motion. We find that there are three factofig:the correla- 05

tion properties of the noisé€ii) the noise intensity, andii)
the external dc field. By studying the different resulting re-
gimes, we can find corresponding critical values at which the
reversalof the kink (antikink) motion occurs. We note that
the reversal of the directed single-particle motion in an
asymmetric periodic potential is affected by the exact shape u
of the potential and especially its higher derivatiy&g]. ) _

The paper is organized as follows. In the next section we /G- 1. Form of the AB potentiaV/(u) with the parameter val-
describe the chain model with an asymmetric double-welf‘eS|01:0_'5 andb, =5 (solid Im_e). For comparison, the form of the
on-site potential. Standing kintantikink) solutions and the symmetric double-well potential with, =b,=0.5 is also presented

corresponding Peierls-Nabarro potential relief will be ob—(dalSheoI ling

tained in Sec. lll. In Sec. IV we study the regular dynamics ,

of asymmetric kinks and antikinks. In Sec. V we give the The function

theory that allows the prediction of the direction of the sto- 1—exgb,(u—1)] 1—exg —b,(u+1)]\2

chastic soliton motion. This theory is confirmed by numeri-  V(u)=

cal simulations of the equations of motion in Sec. VI. Fi- 1-expby(lo—1)] 1—exg —ba(lo+1)]

nally, we summarize our findings in Sec. VII. @
can be chosen as the simplest example of the AB potential.
Il. AN ASYMMETRIC BISTABLE CHAIN MODEL Here the position of the barrier tog is determined as a
We consider a chain of harmonically coupled particlesSolutionu=l, of the equation
subjected to an on-site potential of a general form. This
model belongs to the discrete nonlinear Klein-Gordon fam- expb,(1-wl-1 ex;{bz(1+u)]—1. ®)
ily, describing topological soliton dynamics in one- by b,
dimensional lattices. Its Hamiltonian has the standard form . ] )
[1-3] It follows from Eq. (3) that the barrier top is shifted to the

left (1,<0) if b;<<b, and vice versa, it is shifted to the right
1 . (Io>0) if by>b,. In particular, we choose the values
H=2 > M3+ k(Xns1—Xn) 2+ 80V(Xa/@)|, (1) b,;=0.5 andb,=5.0 and then we find that the frequency of
" the oscillations of the particle in the left well;=9.23 ex-
ceeds the frequency of the oscillations in the right well
,=1.46 by one order. These parameter values are used

constant of the interparticle nearest-neighbor interactign, throughout this paper in numerical computations. In the par-
is the displacement of thath particle from the midpoint atlicular caséh; = b,= b we havel ;=0 and the functior2) is

between the minima of the dimensionless on-site potenti duced to th tric T
V(u), a is the half distance between the minima, and the' ©dUCed to the symmetric form
overdot denotes differentiation with respect to timén this
paper we are dealing with the on-site potential function V(u)=
V(u) of the double-well form with two energeticaljegen-
erate minima (ground statesand differing frequencies of i ] )
small-amplitude oscillations at the minima. In what follows Used before in a number of studies on the proton transport in
this potential is called aasymmetric bistabléAB) potential.  hydrogen-bonded chairjd8,19. In the limit b—;O, the po-
More precisely, we define the on-site double-well functiontential (4) takes the form of the well-knows™ potential
V(u), —e<u<es, satisfying the following propertiegsee  IMp—oV(u)=(1—u?)? _ _ _ _
Fig. 1): (i) both its minima situated at the pointis= +1 are _ Itis conv_enlent to use the dimensionless time and lattice
degenerate andi) its curvatures at the minima or, in other field according to
words, the frequencies of small-amplitude oscillations in the
ground state$), = \V"(—1) andQ,=\V"(1) are different, T=\go/mta, un(7)=xn(t)/a, ®
i.e.,V"(—1)#V"(1). Here and throughout the present paper ) o ) )
primes denote differentiation. As shown in Fig. 1, we nor-féspectively. Then the Hamiltoniad) can be rewritten in
malize the function V(u) through V(+1)=0 and the dimensionless form as
V(lg) =1, wherelye (—1,1) is the position of the barrier top 2
separated by the minima at the points +1; therefore, the _ ﬂ: 1 (% E )2

: : + g(un+1 Un) +V(Un)
parametek g should be referred to as the barrier height of the gg “m[2\dr 2
on-site AB potential. (6)

wherem is the mass of a chain particle, is the stiffness

2

—coshbu
a—r() , a=coslb, (4)

a—1
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where the dimensionless ‘“cooperativity” parameter
g=ka?/ey has been introduced to describe the magnitude of
the interparticle interaction compared to the barrier height.
We also call the parametgrthe dimensionless intersite cou-
pling.

When the AB chain is brought into contact with a stochas-
tic bath, its dynamics is described by the system of the

2459

coupled Langevin equations

d2u, , du,
W:g(umrl_zun'l'unfl)_v (up)+f—y F"_ s

n=0,£1,*2,..., (7) 5.64
. . . . I W
written in the dimensionless forfisee the Hamiltonia6)].
Here f is a dimensionless constant external force, 562\
y=a\m/ey/ 7, is the dimensionless friction coefficient with
t, being the relaxation time, and the dimensionless random 48

force 7, describes the interaction of theh chain particle

with the stochastic bath. The forceg, are supposed to be
independent at differing chain sites and they are defined by

the correlation functions

<77n1( 1) 77n2( 7'2)>:2D76n1n2¢(7'1_ 72), (8)

whereD is the dimensionless noise strength and the autoco

relation functione(7) is normalized by/” . ¢(7)d7=1. For
white noisee(7)=456(7) (D=kgT/eq, Wherekg is Boltz-
mann’s constant and is the thermal bath temperatire
whereas for the exponentially correlated noise

@(7)=(N2exp(—\|7]). 9

Hereh=1/7;, with 7. being the(dimensionlesscorrelation
time of the random forceg,, .

[ll. STANDING SOLITON STATES
AND A PEIERLS-NABARRO RELIEF

To find standing solitor(kink and antikink profiles and
the corresponding Peierls-NabaffN) relief [20], we solve
the minimization problem

1
=20 |5 9(Uns1=U)*+V(Up) |~ min (10

Uz, ..o UN-1

with the boundary conditions;=—1 anduy=1 (kink) or
u;=1 anduy= —1 (antikink). Numerically, it is convenient
to define the soliton center position

l N—-1
ne=5+ nz,l np, (12)

and the soliton width

N—-1 2
1
D=1+2\/ > (n+——nc) P, (12)
n=1 2

where the sequencp,=|uU,.+;—U,|/2, n=1,... N—1, de-
scribes the distribution of chain deformation.

r-

5.66

FIG. 2. PN potential relief(n.) for the antikink(solid line) and
the kink (dashed lingfor (a) g=1 and(b) g=10.

ing of 400 particles. The solution of this problem allows us
to find only stable states of a standing kifdr antikink).
Kink profiles can be obtained from antikink profiles simply
by the symmetric mapping and their form is always asym-
metric. To find other(unstablg kink profiles as well as a
dependence of the kink energy on the position of its center,
i.e., a PN relief, we fix a certain valug,e (—1,1) (fixing

by this a corresponding kink center) and minimize the
energy (10), assuming the rest of variableg, to be free.
Varying monotonically the variabley,,, we obtain a mono-
tonic change of the kink positiom. (a kink center position is
uniquely determined byy,). As a result, one calculates the
dependencé€=£&(n,).

The solution of the minimization problefi0) has shown
that the PN relief is a periodic potential with the period equal
to 1, i.e., the chain spacing. The PN potential minima
e;+=n (0<e;<1) correspond to stable states of the standing
kink solution, while the maxima,+n (e;<e,<e;+1) are
unstable kink states. The difference of these ener@ies
the amplitude of the PN religfAE=E(e,) —E(ey) gives a
pinning energy of the kink or antikink to the chain, viz., the
activation energy for kink motion.

The PN relief for two caseg=1 andg=10 is shown in
Fig. 2. For weak couplingsg=1), the relief&(n;) has an
asymmetricprofile and the asymmetry practically vanishes
with increasing the coupling. It is useful to define the
parameter of the relief asymmetry by=2(e,—e;)—1
(—1<o=1). Thus, for the antikink in the chain with
g=1, we havee;=0.06, e,=0.36, ando=—0.39; in the
caseg=10, these parameters aeg=0.22, e,=0.69, and
o=—0.07. For the kink, the asymmetry of the potential re-
lief has the other sigithe maxima are shifted to the right
e;=0.94, e,=1.64, ando=0.39 if g=1 and e;=0.78,
e,=1.31, ando=0.07 if g=10.

The energy¢(g) and the widthD(g) of the standing kink
(antikink) solution monotonically increase with the growth

The minimization problem(10) was solved numerically of the coupling parametey (proportionally to\/g), while the
by the method of conjugated gradients for the chain consistpinning energyA£(g) exponentially tends to zero as illus-
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\_6 [Eka(R), curve 3 in the chain withg=256,b;=0.5, andb,=5.
- -4r
%D the righ) and Ex, in the opposite case. Obviously,
o

-6} 1 Eax=Eka for a symmetric potential/(u).

: : s : To find each of these effective potentials, we solve the

0 20 40 60 80 100 minimization problem(10) with the conditions that fix the

boundary particles either in the I€KA interaction or in the

8 right (AK interaction) well and additionally the middle par-

FIG. 3. Dependence &) the energye of the stable standing ticle of the chair{say, the N/2)th particld is supposed to be
kink state,(b) the kink widthD, and (c) the pinning energh& on  fixed. Thus, for the AK interaction we define the boundary

the coupling parameta. conditions asu;=uy=1 and fix a certain value of the dis-

placementy,. Let {ul}N_, be a solution of this minimiza-

trated in Fig. 3. In the chain with weak cooperativigythe ~ tion problem. Varying then the displacement valugg,
kink (antikink) is pinned and requires the activation energyfrom —1+0 to +, we can study the dependence of the
A to be transferred to the next chain site. For instanceinteraction energ¥,i on the distance between the antikink
AE=0.57 if g=1 andAE=0.04 forg=10. For weak cou- and kink defined by

plings g, the kink (antikink) propagates like the Brownian LN
particle, carrying out thermally activated jumps over the bar- R=R.,=— 1—u° 13
riers of the PN relief. When the coupling is sufficiently AKT2 ngl (1= Un). 13

strong @=100), the PN relief is practically absent. In this
case, the kink can propagate with permanent velocity andVhen uS=1, we haveE,c=0 and the distanc&ax=0.
profile. Whenuy,— —1+0, the energ¥E x— 2E and the distance
Rak— t+, whereE, is the energy of the standing kinr
ant|k|nk) Next, EAKH_’_OO and RAK%_OO if Upnjp— 0.

To find the interaction energiix,, we have to solve the
same problem(10), but with the boundary conditions

In the displacivelimit (for the chains with strong interpar- U1=Un=—1. In this case, we vary the displacement,
ticle coupling, e.g.g=100), the kinks(and antikinkg can ~ from +1—0 to —c. Now the distance between the kink and

propagate with permanent velocity and shape. In the unthegntikink is given by

IV. NONZERO TEMPERATURE KINK DYNAMICS IN
THE DISPLACIVE LIMIT

malized chain P=0) with y=0 andf=0, both the direc- LN
tions of soliton motion are completely equivalent. However, _ _= 0
due to the asymmetry of the kirflantikink) profile as men- R=R«a=3 21 (14 up). (14

tioned in the preceding section, some spedifisymmetri¢

properties of the interaction between the kink being placed tdn this caseExa— 2Ey andRyga— + if uyp,— +1—0. At
the left and the antikink being placed to the right comparediy,= —1, we haveE ,=0 andRga=0. Also, Exp— +

to the opposite situation might appear. Clearly, there is n@ndRga— — o if uyp— — .

difference in this interaction in the case of any symmetric The minimization problem(10) was solved for both the
function V(u). Let us find the effective potentials of both AK and KA interactions at the following chain parameters:
these interactions, which we denoteByy (if the antikinkis  g=256, N=500, b;=0.5, andb,=5. The effective poten-
situated to the left, whereas the kink is found totials Eax(R) andExa(R) are plotted in Fig. 4. As follows
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from this figure, the asymmetry of the double-well potential
results in an essential difference in the form of these poten-
tials. Such a difference should give rise to a different sce-
nario of the AK and KA collision processes.

To study the kink-antikink interaction dynamics, we need
to have appropriate initial conditions for the simulations of
the equations of motioii7) for the case when the chain is
isolated, i.e.,f=0, y=0, and »,=0. We look for solitary
wave solutions of permanent profile that are sufficiently
smooth from site to site and propagate with a constant ve- (b)
locity s. In this case, setting,(7)=u(n—s7), we can ap-
proximately substitute the time derivativg(7) in Eq.(7) by
the spatial difference derivativ&(u,;;—2U,+Uy_1). As a

result, we obtain the discrete algebraic equation N
(85=5%) (U1~ 2Up+Un-1) = V'(Un) =0, (19) 050 ]

where so= /g is the velocity of small-amplitude waves.

Therefore, soliton solutions to Eq15) can be found by

minimization of the corresponding\(— 2)-dimensional La- 0 ‘

grangian function -1 0 1 2

u
N1
L=L{u,;s}= Z > (sg—sz)(un+l—un)2+V(un) FIG. 5. Results of calculations for the central particle of an

n=1

antikink atg=1: (a) the double-well form of the effective potential
(16) U(u) with nondegenerate local minima afin) the schematic rep-
resentation of the corresponding antikink solution with the central

over all the Varif"‘_bleS'Z""'uNfl and fixing the ap_propriate particle (white ball) located in the right well of the on-site potential
boundary conditionsu;=—1 anduy=1 for a kink and /.

u;=1 anduy=—1 for an antikink.
Let{uﬂ} be a solution obtained under the minimization of bath and damping through the coupled stochastic equations

the function(16). Then of motion (7). Consider only theentral particle of the kink
(or antikink. On the one hand, this particle moves in the
Un(7)=—s(ug,;—up) (17)  asymmetric potentiaM(u) and, on the other hand, it is
coupled to its adjacent nearest-neighboring particles. Clearly,
is the velocity of thenth particle and the central particle at a given instant of time can be consid-
N1y ered as moving in :;‘ome effective double-well poteritial)
. 2 0 0 0 as shown in Fig. &), which depends on the bias for€eand
€= ,Zl 2 (855 (Un1 = Un)*+ V(up) (18) the interparticle coupling parametgr This potential can be

calculated explicitly and the procedure resembles that of cal-

is the soliton energy. The soliton width is defined by the culating the PN relief. Initially, by solving the minimization
same equationgl1) and (12). According to these equations problem(10) for a kink or an antikink, we fix the two stable
as well as Eqs(17) and(18), we calculated the dependence kink (or antikink) configurations of the variables,,...,uy,
of the energy& and the widthD on the velocity s, which are simply shifted by one period of the PN relief. Let
0=<s<s,. We have obtained that with the growth of the the first configuration correspond to the case when the
velocity s, the energy€ increases monotonically and the (N/2)th particle is situated around the left well of the poten-
width D decreases monotonica”y_ As—sp= \/61 we have tial V(U) and the second one when this particle is in the
& andD—1. vicinity of the right well[the latter case is shown schemati-

Using the results of the minimization of the Lagrangiancally in Fig. Sb)]. Then we vary continuously thay,th
(16), we carried out simulations of the AK and KA collisions displacement, keeping the rest of the variables in each of the
in the chain withN=500 andg=256. These simulations two kink (or antikink) states. As a result, we get two differ-
have shown that the KA collision results in the kink-antikink ent effective potentialdJ;(u) and U,(u) for the (N/2)th
recombination for velocities<0.6s, and their elastic reflec- particle being placed in the left and the right well, respec-
tion if s=0.7s,. On the other hand, the AK collision was tively. Obviously, each of these potentials has a double-well

shown to result in only antikink-kink recombination pro- form if the couplingg is not very large(discrete regimg but
cesses. the depth of the left well otJ,(u) and that of the right well

of U,(u) will be different, in general. Finally, “sewing”
these wellg(the left half ofU; and the right half ofU,) at
their barrier tops, we obtain the effective potentia{u),
which appears to baondegeneratesince the depth of the
Let us assume now that an initially prepared standing kinKeft well of U differs from that of the right well otJ,. As
(or antikink state is subjected to the action of a stochastidollows from Fig. 5a), the right (low-frequency

V. STOCHASTIC DYNAMICS OF THE CENTRAL
PARTICLE OF A KINK
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minimum now becomes a ground state with the lowest en- 1 [ B
ergy: U(l;)>U(l,). The local minima au=|; labeled by Flo)=5_ J e(m)e'“Tdr. (23
the indexi, i=1 (left) andi=2 (right), as well as the barrier -

top positionl, of the “dressed” potentialU(u) are dis-  For the exponentially correlated noise defined by @%.the

placed from the corresponding stationary points of therourier transform is simply the Lorentzian
“bare” potential V(u), as can be seen by a comparison of
Figs. 5a) and 8b). Note that the nondegeneracy of the po-
tential U(u) is due to the asymmetry of the potenti&lu), Flw)= m (24)
while for a symmetric function/(u) the corresponding po-

tential U (u) is always symmetric. The frequencies of small- Using the explicit expression®2) and(24), by straightfor-
amplitude oscillations at the local minima given by ward contour integration we find the averaged values of the
w1,=U"(l1,) are also different and their difference van- kinetic energy

ishes with the growth of the couplingt On the other hand, 5

the dressed frequencies tend to the bare frequencids; K:E D A (25)
defined through the on-site potenti®(u) if g—0. As a 2T Nyt wiz

result of the linearization around each of these local minima,

two parabolic potentials arise with the frequencigs Due  and of the potential energy

to the frequency disparity and nondegeneracy, the residence 2 2 2. 2 2

probability of the central particle in each local minimum of P-=£ D M =yt ol A yo; (26)

the effective potential(u) will be different. We evaluate b2 e Y

the relative residence probabilities by using the Kramers

theory and use the term “stochastic ground state” to refer tdn the limiting case of infinitely small frictions§=0), the

the minimum where the particle spends more time or has aaxpressiong25) and (26) are essentially simplified, so that

)\2

averaged residence probability exceeding 1/2. the total averaged energy becomes
Let p be the probability of finding the central particle in o o 2
the left minimum. Besides the rati®, /w,, this probability (E12=DN/(\+wi). (27)

depends on the noise intensiyand correlation timer. . In . .

order to investigate the dependencepain these parameters, ~ 1h€ _€xpression (27) together with the depths
we consider the effective single-particle equation for sto-AUi=U(lo) —U(l;), i=1 (left) andi=2 (right), allows one
chastic oscillations of theN/2)th particle in each parabolic to determine which well of the on-site potenti&(u) is vis-
potential well. Denote the stochastic fielg,,— 1 byu, and  ited more_often by the particle, being the stochastlc_ ground
Unp+1 by U,. Then, according to Eq7), the linearized State at given values @ and\. As a result, we obtain the

stochastic equation for the central particle becomes dependence of the leftight) well residence probability on

the correlation timer. . Indeed, the rate of the particle trans-
u_’1”2+ wizu_l,ﬁ W_i,z: 7 (19 Lenrgric;m the left {=1) or right (=2) minimum to the other

where the random forcey(7) satisfies the corresponding

single-particle covariance given lhgee Eq.(8)] p-=ﬂ exg — & . (28
! 277 <E|>
(n(11)7(7,))=2Dye(11= 7). @0 Therefore, the probability of finding the particle in the left
well is

Using Egs.(19) and (20), the total (kinetic and potential
averaged energy of the stochastic oscillations in each well 1

(i=1,2) can be represented as the sum P=17Aa"
11 1
(E)=Ki+Pi=lim fo {5 (u)?+ 35 ofuf|dr A= P2
— P1
- _ 2 _ 2 2
=Dyf (0*+0?)|R(w)|*F(w)do, =12, _ 91 g AU AU F (018U, 7 w3AUs) e
- wo D ’
(21 (29)
where We note that wherA=1 both the minima are probable
equally (p=1/2); using this property, we can find analyti-
1 cally the critical noise correlation time, that signals the
Ridw)= W iy (22 reversalof the stochastic ground states:

\/Dln(wl/wz)—(Aul—AUZ)
To= .

is the response function of the Langevin equatitf) and
’ J a 0]AU;— w3AU,

the Fourier transform is defined by

(30
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The value 7, determines the correlation time, for values TABLE I. Dependence of the reversal time for the stochastic
larger (smalley of which the left(right) potential minimum  ground states;, on the noise strength.

becomes more probable. As a result, the (iefht) minimum

is a stochastic ground state fog> 7y (7.<7g). At zero D 70
noise strength=0) and without a bias fieldf=0), the 0.1 0.047
right (low-frequency well is always a stochastic ground state 0.2 0.067
(79=0). At nonzero noise strengths, a “freezing” of high- 0'3 0.082
frequency oscillations occurs when>0 and this effect is ' '

. 0.4 0.094
stronger for the lefthigh-frequency well. As a result, the 05 0.105

probability p of finding the particle in the left minimum in-
creases with the growth of the noise correlation time
reaching the value 1/2 at.= 7, and exceeding it for all
T TQ-

Thus, having calculated the effective potentifju) (in
fact, we need to know only the effective frequenaigs, and
depthsAU, ,), we can conclude whicHeft or right) well is
a stochastic ground state. In other words, one can determi
the direction of preferential particle transfers over the barrieli
separated by the minima of the on-site poteréli). This
knowledge (about the residence probability of the central
particle immediately allows one to determine the direction
of the drift of the kink as a whole object. Indeed, when a
kink propagates to the rigliteft) end of the chain, its central

particle is transferred from the rigliteft) well to the left determined b . '
X TR : — y these factors. When the coupling suffi-
(right) one. The opposite situation with the directions hOIdScientIy weak, the growth of the correlation time results in

for an antikink. Summarizing, one can conclude that the di-_ ".. °. oY : .

X ! S switching the direction of kink motion, but for strong cou-
rection of motion of the central particle is opposi@ong lings g the kink motion direction does not depend on the
the direction of the kinKantikink). Therefore, if the reversal piings g . P

. ; correlation timer,.
of the stochastic ground state for the central particle occurs; ¢
then the corresponding reversal effect takes place for the
kink and antikink motion. For a given., only one of the VI. NUMERICAL RESULTS
minima is more probable and therefore it becomes the cor-
responding stochastic ground state; this leads talttexted
kink motion, i.e., to symmetry breaking the Brownian mo-
tion of kinks and antikinks. Furthermore, this analysis show:
that kinks and antikinks propagate appositedirections, re-
spectively. Thus, varying the noise properties such as t : . ) . :
cgrrelatioyn timer, or){chg strengthD, ‘ihepreversal of the studies .Of th_e _dynamlcs. of the cham particles driven by col-
stochastic ground state occurs, leading to the reversal of th ed_n0|se, Itis convenient to §ubst|tute EG®.and (9) by
direction of kink(antikink) propagation. Note that, according the first-order stochastic equations
to Eq. (30), the reversal timer, depends on the noise q
strengthD. This dependence can be calculated explicitly and Tn _
some results are given in Table I. ar ~Ménm ), n=0x122,., (32)
The reversal effect occurs for sufficiently small values of

the couplingg since with increasing, the disparity of the  yhere theg,(7)’s are normally distributed-correlated ran-
effective frequencies); and the deptha U; decreases and, gom forceg21], i.e.,
as a result, the switchingreversal time 7, monotonically
tends to infinity[see EQq.(30)]. Hence the cooperativity of

two counterbalancing factors. On the one hand, the interpar-
ticle coupling g results in effective increasing the high-
frequency minimum of the potenti&J (u) and this circum-
stance, in turn gives rise to the decreasing the probability of
article transfers from the low-frequency well to the high-
?equency one. Note that in the potenti&lu) this probabil-

ty is always less than 1/2. On the other hand, the presence of
a nonzero corellation time, results in effective freezing out
high-frequency oscillations and this is exhibited in decreas-
ing the probability of particle transfers from the high-
frequency(left) well to the low-frequencyright) one. There-
fore, the direction of the noise-induced motion of the kink is

Consider a finite AB chain with fixed ends and consisting
of N particles. The chain is assumed to be driven by expo-
entially correlated noise, including white noise as a particu-
ar case, so that its dynamics is described by the set of equa-
hI[’ions (7)—(9) wheren=1,2,..,N. However, for numerical

the chainopposesthe reversal effect and for sufficiently (€n(72)€n,(72)) = 2D Yy, (71— 7). (32
large g it disappears, though the double-well form of the

effective potentialU(u) still exists. More precisely, for First, we consider the stochastic vibrations of the chain in
7.< T, We havep(r.,)<1/2 and, as a result, the kirfanti-  one of the ground states, when=—-1 or u,=1 for all

kink) should propagate to the leftight), while for r.> 7 n=1,...N. The asymmetry of the potentigl(u) should re-

we obtainp(7,)>1/2 and now the kink@antikink) should  sultin the difference of the dynamics of the chain particles in

move to the right(left). Indeed, at the values;=0.5 and these ground states. Indeed, the asymmetric ground states

b,=5 we obtainedp(r.)<1/2 for all reasonable values of have different spectra of small-amplitude oscillations, viz.,

the correlation timer, if g=1.5. Note that for a symmetric [(; ,\/Qi2+4g], i=1,2. Let us define the dimensionless

double-well potential I§;=b,), the probabilityp is always thermal capacity byc;=(E;)/D(N—2) for each of the

1/2 and therefore the stochastic vibrations cannot give rise tground states. Note that for the system with harmonic forces

a directed kink(antikink) motion. and white noise the dimensionless thermal capacity is always
Thus, in the chain with an on-site AB potential, we havel. The presence of an anharmonicity leads to some depen-
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TABLE II. Dependence of the dimensionless thermal capacitiem, as an intersection point on the,() plane of the line
c;, of the ground statesi,=+1 on the correlation timer, at  connected the pOinEﬁ(n,Un)}Nzl with the lineu=uj.
g=1andD=0.1,g=10 andD=0.2, andg=100 andD=0.2. The existence of the reversal of soliton motion predicted
through the analytical arguments of Sec. V was confirmed by

g=1,0=01 g¢=10,D=02  g=100,D=0.2 the numerical simulations for the parameter valhes100,
Tc 1 C2 G C2 G C2 g=1,D=0.2, andf=0. Their results are illustrated in Fig.
001 1.027 0975 1032 0992 1002 0980 6. Inthe simulations we observed that at snalithe kink
0.1 0550 0.930 0511 0815 0.305 0.433 and gnukmk are mainly standing an_d on]y very rarely do
02 0228 0825 0200 0568 0.104 0.219 they_jump random_ly to the nearby Ia_ttlce sites. At small cor-
0.3 0114 0731 0100 0410  0.050 0142 'elation timesr, including also white n0|sg7QfQ), the
04 0069 0617 0057 0309 0.030 0099 contact v_wth the thermal bath moves the k|('dﬂt|[<|nk) to
05 005 oso 00 0233 oo oore i AND IS SR BT B L e i ihe

Cc

0.6 0.02 0415 0027 0.187 0.013 0.058 direction of their motion as demonstrated by paths 3 and 4 in
Fig. 6. This behavior of kinks and antikinks is in agreement
dence ofc; , on the noise strength and the presence of a with the results of Seg:. V, where we have pred'icteq the re-
nonzero correlation timer, also implies a dependence on v_ersal of the _stochaspc grounql state of the_chaln with suffi-
this parameter. ciently weak interparticle coupling at a certain value of the

Besides the valuds, = 0.5 andb,=5, we take throughout correlation timer,. This behavior is explained by the stron-
the present papep=0.1. We look for the dependence of 9&f freezing(with the increase of.) of the high-frequency
c,, on the correlation timer, at different values of the cou- Stateu,=—1 compared to that of the low-frequency state
pling g. To this end, we integrate numerically the system ofun=1 (see Table |\ o
equationg7) and (31) with the correlation equation@2) at However, in the case of stronger cooperativig/<10),
the initial conditionsu,(0)=—1, u’(0)=0 andu,(0)=1, the numerical simulations of Eq$7) and (31) with f=0
u’(0)=0 with N=100 andf = 0. The results of these simu- have demonstrated the absence of the reversal effect. Thus

n .

lations are presented in Table Il. As follows from these re—th.e kinlf (antikink) propagation is diregted _only to the_ left
(right), independently on the correlation timg,. In this

sults, atr.>0 the right ground state has higher capacity than : .
the left one. The ratia,/c, increases monotonically with case, the growth of; results only in the gradual reduction of

the growth of r,. The reason for this behavior is that the the averaged kink velocity, not reaching the reversal effect.

spectum of smallampltuce osclaions ai=1 s below | SMKI mollon for e case i shown i Flg 7 Agan,
the spectrum of oscillations ai,=—1 (see Table II). 9 Y9 '

Therefore, the increase of the correlation timeleads es-

sentially to freezing high-frequency vibrations at the state 90

u,=— 1. With increasing the coupling, the relative shift of

the spectra of small-amplitude oscillations is reduced and, as

a result, the rati@,/c, is also decreased. The growth of the

couplingg leads to a gradual equalization of the capacities of

the ground state&,/c;—1+0 wheng— ). 70
Consider now the kink dynamics. We choose the initial

conditions for the system of equatiofig) and (31), which

correspond to the stable standing ki¢@ntikink) state, i.e., 60

un(0)=ul andu/ (0)=0, wheren=1,2,... N and{u®}"_, is

a solution of the minimization problei0). First, we fix the <°

central particle of the kink, which is the closest to the top of

the barrierly, and then simulate Eqé7) and(31) during the

time interval7=500. This time is sufficient for the chain to 40

come to thermal equilibrium with the bath, but the kink itself

is not yet allowed to move. After this time period, we allow

the fixed particle to move and observe the kink motion in the 30

thermalized chain. To this end, we define the kink center

80

TABLE Ill. Dependence of the spectra of small-amplitude os- 20
cillations [ Q; ,\/Q? +4g], i=1,2, on the interparticle coupling.
10 1 Il 1 1
9 2 VOi+4g Q, VO3+4g 0 2000 4000 6000 8000 10000
0 9.23 9.23 1.46 1.46 T
1 9.23 9.44 1.46 2.48 FIG. 6. Noise-induced motion of a kinlkurves 1 and Band an
10 9.23 11.19 1.46 6.49 antikink (curves 2 and ¥ in the chain with N=100, g=1,
100 9.23 22.03 1.46 20.05 b,=0.5,b,=5, 7,=10,8=0.2, andf=0 at7.=0 (curves 1 and

and7,=0.3 (curves 3 and ¥
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FIG. 7. Noise-induced motion of an antikinkl=400, g=10,
b,=0.5, b,=5, r,=10, 8=0.2, andf=0) at 7.=0, 0.1, 0.2, 0.3,
0.4, 0.5, and 0.6curves 1, 2, 3, 4, 5, 6, and 7, respectively

V. Note that with an increase of the coupligg the effect of
the stronger freezing of the high-frequency ground state than
of the low-frequency one, which providesgt 1 the change

of the direction of motion, is reduce@ee Table ). The

T

FIG. 8. Thermally activated motion of an antikink at the pres-
ence of an external forcé=—0.05 in the chain withN=400,
g=10,b;=0.5,b,=5, 7,=10, andr,=0 (white noise at tempera-
turesD=0, 0.05, 0.1, 0.15, 0.2, and O(8urves 1, 2, 3, 4, 5, and 6,
respectively.

velocity of noise-induced kink motion is increased with a 400
decrease of the correlation time.

When a constant driving forckis present, the minima of
the total on-site potentia¥(u) — fu become nondegenerate. 350
We consider the case of sufficiently strong cooperativity
(e.g.,g=10) when the reversal associated with varymgs
absent. White noise is considered as a particular case. Then 300
if >0, a kink(antikink) moves along the field, i.e., the kink
(antikink) propagates to the leftight) at any noise strength 250
D. Similarly, in the casef<0, but for sufficiently small
noise strength®, the soliton motion occurs along the field
f. However, with increasin®, this motion becomes slower = 200
and slower and at a certain critical temperatOrgf ) the
soliton comes to a stop. A further increase of the noise
strength gives rise to the kink motion in the opposite direc- 1507
tion, i.e., againstthe applied dc forcd. As follows from
Egs.(29), even in the limiting case of white noise=0), 100
the soliton motion can occur against the fi€ldThe presence
of the asymmetrnyw# w, appears to be a sufficient condi-
tion for soliton propagation against an external dc field. In 50
the case of the antikink dynamics, this reversal effect is il-
lustrated in Fig. 8. Here, dt=—0.05, 7.=0, and the noise
strengthsD =0,0.05,0.1, the antikink propagates to the left, 00 200 400 600 800 1000

while for the valuedD=0.15,0.2,0.3, it moves to the right.
We note that kinks or antikinks can propagate against the
driving dc forcef only if the external force does not exceed
a certain threshold valuig(D). Thus we have observedee

Tr

Fig. 9 that atD=0.2 andr.=0, the antikink propagates to f=

T

FIG. 9. Same motion[N=400, g=10, b;=0.5, b,=5,
=10, 7.=0 (white nois@, andD=0.2] under the external force
0, —0.05,-0.1, and-0.15(curves 1, 2, 3, and 4, respectively
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the right(against the driving forcé ) if f=0,—0.05 and to  white noise, while colored noise of sufficient correlation re-

the left (along the fieldf ) if f=—0.1,—0.15. sults in direction reversal. Therefore, the asymmetry of the
double-well potential is a sufficient ingredient for directed
VII. SUMMARY AND OUTLOOK soliton transport. The kink motion in the presence of white

) o _ o noise does not contradict the second law of thermodynamics
_ The reversal of the directed diffusive soliton motion in thesince the initial states are not in equilibrium and the kinks

kink-bearing model with the on-site potential of an asym-can travel only once through the system. In a finite periodic
metic double-well form was shown to appear due to tWojattice an initially created kink-antikink pair would travel in
counterbalancing factors. On the one hand, the interparticigpposite directions and self-annihilate after reencountering
coupling results in an effective lifting of the high-frequency each other, bringing thus the lattice into thermal equilibrium.
minimum of the on-site potential and this in turn gives rise t0The effects presented are relevant when ambient temperature
a decrease of the probability for the particle transfers froms much smaller than the soliton bindiny energy; a number of
the low-frequency well to the high-frequency one. Note thatinteresting questions arise if we consider higher temperatures
this probability is always less than 1/2 if the chain particlesyhere kink-antikink annihilation and nucleation take place
are driven by white noise. On the other hand, the nonzergpo 23.
Correlation nOise reSU|tS in effective freeZing out h|gh' The soliton reversal effect can have a Variety of app“ca_
frequency oscillations and this is exhibited in the decreasingjons in kink-bearing systems with some on-site asymmetry.
probability of the particle transfers from the left well to the Thys the contact with a thermal bath can either speed up or
r|ght one. Therefore, the direCtion Of the noise'activated SO"SIOW down transport processes or even reverse them at cer-
ton motion is determined by these factors. It is worth men+ain critical values of temperature. Such a high sensitivity of
tioning that the reVersal of the direCted Soliton motion Ca.ntransport mechanisms to temperature can be used by a bio_
also be induced by other counterbalance factors. Thus, fajystem for its thermal control. For instance, lowering tem-
particular shapes of the asymmetric periodic potential thgyerature can result in a charge current for the transformation
reversal effect has been observed recently for the singlesf chemical into thermal energy. Thus one can conclude that
particle motion[17]. In this case, the change of the current istaking into account the realistic asymmetry of biomolecular

caused by specific shapes of the ratchet periodic potential 0§ystems might help in understanding the primary mecha-
more precisely, by the proper interplay of its higher deriva-nisms of their functioning.

tives.

The collective effect of rectifying t_he soliton motion that ACKNOWLEDGMENTS
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larly sensitive to the on-site potential details. It is necessaryhe European Economic Community under the INTAS Grant
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